JOHNSTON
<br />PROJECT NO:
<br />SHEET NO:
<br />OF:
<br />1935000706
<br />10
<br />*13
<br />BURKHOLDER
<br />JBAAsSOCIATES
<br />PROJECT NAME:
<br />#0706 - Zephyrhills, FL
<br />MADE BY:
<br />DATE:
<br />consulting structural engineers,
<br />MAV
<br />03/26/19
<br />930 CENTRAL . K AN$AS CM, MO 64105
<br />CHECKED BY:
<br />DATE:
<br />816.421.4200 • WWW.JBAENGR.COIN
<br />Shelving / Double Sided 60" Tall "T"'5 Level 48T
<br />2017 FBC / IBC 2015 / ASCE 7-10 / 2012 RMI (ANSI/MH16.1-12)
<br />Seismic Importance Factor = 1.5
<br />Supported on Elevated Floor (YN): No
<br />Total Load per shelf = 150 lbs <-assumes (2) shelves per level
<br />WIDTH
<br />SHELF
<br />AEI TF I-
<br /># of Levels = 5 Level
<br />Uniform Weight per level = 18.75 psf/shelf
<br />Weight of Unit = 1001bs
<br />Upright Frame anchorage spacing nb width 4 ft (Frames are assumed to be 4'-O" oc
<br />9 Pa 9R� )_ )
<br />C
<br />S
<br />Shelf depth (ea. side) =, 24 in Shelf Load / Level
<br />/ Frame
<br />he= Din
<br />h3= 0in
<br />F'
<br />S
<br />hT = 0 in
<br />j
<br />h,= 0in
<br />..
<br />hs = 13.5 in 300 lbs
<br />h4 = 13.5 in 300 lbs
<br />h3 = 13.5 in 3001bs
<br />h, = 13.5 in 300 lbs
<br />t J
<br />h, = 6 in 300 lbs
<br />Total Shelf Height, H, = 60 in Unit Height, H. = 60 in
<br />Al
<br />Unit Base Depth, D = 33 in
<br />Overtunning Stability Load cases are per ASCE 7 sect. 15.5.3.E :
<br />D
<br />Load Case 1• [per RMI sect. 2.6.8(1) - PL=0.67(PL)]
<br />Load Case 2• [per RMI sect. 2.6.8(2) - PL=1.0(PL)]
<br />[per RMI sect. 2.6.2, PLRF = 1.01
<br />[per RMI sect. 2.6.2, PLR, = 1.01
<br />Seismic (C,)(I,) = 0.023 W, (Cross -Aisle)
<br />Seismic (C,)(l,) = 0.023 W. (Cross -Aisle)
<br />W. = (0.67)(PLRF)((0.67)PL)+DL = 773.4 lbs
<br />W. = (0.67)(PLRF)(0 )PL)♦DL = 301.0 lbs
<br />Base Shear, V = C,I,W, = 17.9 lbs
<br />Base Shear, V = C,I,W, = 7.0 lbs
<br />Horizontal forces per level, F. = CKV (RMI sect 2.6.6)
<br />Horizontal forces per level, F. = C,,,,V (RMI sect 2.6.6)
<br />(Service Loads, E = 0.7) F8= 0.0 lbs @ 0 in (CM)
<br />(Service Loads) Fs= 0.0 lbs
<br />UQ= Fs= 0.0 lbs @ 0 in (CM)
<br />Fs= 0.0 lbs
<br />(CM) = Product Center of FT= 0.0 lbs @ 0 in (CM)
<br />FT= 0.0 lbs
<br />Mass typically 6 inches F, = 0.0 lbs @ 0 in (CM)
<br />Fs = 0.0 lbs
<br />above the top of shelf at F5= 3.9 lbs @ 66 in (CM)
<br />Fs= 4.2 lbs @ 66in (CM)
<br />each level. F4 = 3.1 lbs @ 52.5 in (CM)
<br />F4 = 0.0 lbs
<br />F3 = 2.3 lbs @ 39 in (CM)
<br />F3 = 0.0 lbs
<br />Fz = 1.5 lbs @ 25.5 in (CM)
<br />Fz = 0.0 lbs
<br />F1= 0.7lbs @ 12 in (CM)
<br />F, = 0.0 lbs
<br />F. = 0.9 lbs @ 30 in (CM)
<br />F. = 0.6 lbs @ 30in (CM)
<br />VI = 17.9 lbs (@ Factored Loads)
<br />if; = 7.0 lbs (@ Factored Loads)
<br />Calculate Overturning Moment (Service), MOT = Tfih;
<br />Calculate Overturning Moment (Service), MOT = if h,
<br />MOT = 591 in-lbs
<br />MOT = 299 in-lbs
<br />Calculate Resisting Moment (Service), MRST
<br />Calculate Resisting Moment (Service), MRsT
<br />MRsT = 18233 in-lbs
<br />MRST = 6600 in-lbs
<br />Factor of Safety
<br />Factor of Safety
<br />FOS = 30.860
<br />FOS = 22.039
<br />NO UPLIFT - NO ANCHORS REQUIRED
<br />NO UPLIFT - NO ANCHORS REQUIRED
<br />Check Single Frame / Bay Overturning Stability:
<br />MOT (LC#1) = 591 in-lbs MOT (LC#2) = 299 in-lbs.
<br />MRsT (LC#1) = 18233 in-lbs MRST (LC#2) = 6600 in-lbs
<br />FOS=MRST/MOT = 30.860 z 1.5 No AB Regd FOS = M / M -
<br />RST oT - 22.039
<br />----- .--. _ �.�-- 1"wx226A STEEL
<br />z 1.5 No AB Regd ............ ANCHOR STRAP
<br />M
<br />-> No Anchorage Reqd - No Net U IIR at LC#1 and LC#2
<br />EPLACIS STRAP AT
<br />j ACH END FRAME
<br />Base Reactions:
<br />AS � -! AND:$`-0"oc (MAX) AT
<br />r- _
<br />t--4 '_- INTERIOR FRAMES,
<br />Reactions (Service Loads): LC #1 LC #2
<br />t ' t
<br />y i TYP tuNa,
<br />r '
<br />Rh = 6 lbs 2 lbs
<br />? . s - ' (1)ANCHOR MOLT
<br />R = 0 Ibs (No Uplift) 0 Ibs (No Uplift)
<br />3 PER STRAP..
<br />TYP t,tRJO:
<br />Overturning FOS = 30.860 >-1.5 22.039 >-1.5
<br />- -
<br />} ✓ I i f
<br />Sliding Restraint force, RRsT / FOS = 101lbs / 16.107 >= 1.5 OK 40lbs / 16.322 >= 1.5 OK
<br />'(I
<br />Reactions (Factored Loads). LC #1 LC #2
<br />Base Shear (R,h) = 18 lbs, 7 lbs
<br />Tension Allowables
<br />Net Uplift (R,,,,) = 0 lbs 0 lbs
<br />Steel Strength, (0.75)$N„ = 4239 lbs <-ACI 318-14 Eq 17.4.1.2
<br />Overturning + Gravity (P) = 746lbs 209 lbs
<br />Concrete Breakout, (0.75)¢Ncw= 636lbs <-ACI 318-14 Eq 17.4.2.1a
<br />Pullout Strength, (0.75)�No = NA <_Act 318-14 Eq 17.4.3.1
<br />Anchor Design (using "Cracked Concrete" Properties) Concrete" Properties)
<br />LC #1 LC #2
<br />Try: 3/$ 0 DeWalt Screw BOO Anchor 2* embed.
<br />Factored Tension Load (N) = 0Ibs 0Ibs
<br />Embedment = 2 in
<br />max tension stress ratio (TSR) = 0.000 OK 0.000 OK
<br />f', = 2500 psi
<br />Shear Allowables
<br />e, = Din <- Ecoen. Of Anchor
<br />Steel Strength, +V„= 1449 lbs <-ACI 318-14 Eq 17.5.1.2c
<br />h,, = 1.33 in 1.5(h„) = 2 in
<br />Concrete breakout, 4Vd.= 1578 lbs <-ACI 318-14 Eq 17.5.2.1 b
<br />c, = 5 in 1.5(c,) = 7.5 in
<br />Concrete pryout, +V,p, = 913 lbs <-ACI 318-14 Eq 17.5.3.1 b
<br />Conc. thickness, t = - 4In I
<br />LC #1 LC #2
<br /># of Anchors, n = 1 anchors per connection
<br />Factored Shear Load (V) = 18 lbs 7 lbs
<br />Sx = ' Din
<br />Max shear stress ratio (VSR) = 0.020 OK 0.008 OK
<br />A„ = 0.094 inA2 Combined shear and tension stress ratio (TSR + VSR) = 0.020 < 1.2 OK - LC#1 (controls)
<br />USE: NO UPLIFT - NO ANCHORS REQUIRED
<br />48T - Full Gondola
<br />
|