Laserfiche WebLink
JOHNSTON <br />PROJECT NO: <br />SHEET NO: <br />OF: <br />1935000706 <br />10 <br />*13 <br />BURKHOLDER <br />JBAAsSOCIATES <br />PROJECT NAME: <br />#0706 - Zephyrhills, FL <br />MADE BY: <br />DATE: <br />consulting structural engineers, <br />MAV <br />03/26/19 <br />930 CENTRAL . K AN$AS CM, MO 64105 <br />CHECKED BY: <br />DATE: <br />816.421.4200 • WWW.JBAENGR.COIN <br />Shelving / Double Sided 60" Tall "T"'5 Level 48T <br />2017 FBC / IBC 2015 / ASCE 7-10 / 2012 RMI (ANSI/MH16.1-12) <br />Seismic Importance Factor = 1.5 <br />Supported on Elevated Floor (YN): No <br />Total Load per shelf = 150 lbs <-assumes (2) shelves per level <br />WIDTH <br />SHELF <br />AEI TF I- <br /># of Levels = 5 Level <br />Uniform Weight per level = 18.75 psf/shelf <br />Weight of Unit = 1001bs <br />Upright Frame anchorage spacing nb width 4 ft (Frames are assumed to be 4'-O" oc <br />9 Pa 9R� )_ ) <br />C <br />S <br />Shelf depth (ea. side) =, 24 in Shelf Load / Level <br />/ Frame <br />he= Din <br />h3= 0in <br />F' <br />S <br />hT = 0 in <br />j <br />h,= 0in <br />.. <br />hs = 13.5 in 300 lbs <br />h4 = 13.5 in 300 lbs <br />h3 = 13.5 in 3001bs <br />h, = 13.5 in 300 lbs <br />t J <br />h, = 6 in 300 lbs <br />Total Shelf Height, H, = 60 in Unit Height, H. = 60 in <br />Al <br />Unit Base Depth, D = 33 in <br />Overtunning Stability Load cases are per ASCE 7 sect. 15.5.3.E : <br />D <br />Load Case 1• [per RMI sect. 2.6.8(1) - PL=0.67(PL)] <br />Load Case 2• [per RMI sect. 2.6.8(2) - PL=1.0(PL)] <br />[per RMI sect. 2.6.2, PLRF = 1.01 <br />[per RMI sect. 2.6.2, PLR, = 1.01 <br />Seismic (C,)(I,) = 0.023 W, (Cross -Aisle) <br />Seismic (C,)(l,) = 0.023 W. (Cross -Aisle) <br />W. = (0.67)(PLRF)((0.67)PL)+DL = 773.4 lbs <br />W. = (0.67)(PLRF)(0 )PL)♦DL = 301.0 lbs <br />Base Shear, V = C,I,W, = 17.9 lbs <br />Base Shear, V = C,I,W, = 7.0 lbs <br />Horizontal forces per level, F. = CKV (RMI sect 2.6.6) <br />Horizontal forces per level, F. = C,,,,V (RMI sect 2.6.6) <br />(Service Loads, E = 0.7) F8= 0.0 lbs @ 0 in (CM) <br />(Service Loads) Fs= 0.0 lbs <br />UQ= Fs= 0.0 lbs @ 0 in (CM) <br />Fs= 0.0 lbs <br />(CM) = Product Center of FT= 0.0 lbs @ 0 in (CM) <br />FT= 0.0 lbs <br />Mass typically 6 inches F, = 0.0 lbs @ 0 in (CM) <br />Fs = 0.0 lbs <br />above the top of shelf at F5= 3.9 lbs @ 66 in (CM) <br />Fs= 4.2 lbs @ 66in (CM) <br />each level. F4 = 3.1 lbs @ 52.5 in (CM) <br />F4 = 0.0 lbs <br />F3 = 2.3 lbs @ 39 in (CM) <br />F3 = 0.0 lbs <br />Fz = 1.5 lbs @ 25.5 in (CM) <br />Fz = 0.0 lbs <br />F1= 0.7lbs @ 12 in (CM) <br />F, = 0.0 lbs <br />F. = 0.9 lbs @ 30 in (CM) <br />F. = 0.6 lbs @ 30in (CM) <br />VI = 17.9 lbs (@ Factored Loads) <br />if; = 7.0 lbs (@ Factored Loads) <br />Calculate Overturning Moment (Service), MOT = Tfih; <br />Calculate Overturning Moment (Service), MOT = if h, <br />MOT = 591 in-lbs <br />MOT = 299 in-lbs <br />Calculate Resisting Moment (Service), MRST <br />Calculate Resisting Moment (Service), MRsT <br />MRsT = 18233 in-lbs <br />MRST = 6600 in-lbs <br />Factor of Safety <br />Factor of Safety <br />FOS = 30.860 <br />FOS = 22.039 <br />NO UPLIFT - NO ANCHORS REQUIRED <br />NO UPLIFT - NO ANCHORS REQUIRED <br />Check Single Frame / Bay Overturning Stability: <br />MOT (LC#1) = 591 in-lbs MOT (LC#2) = 299 in-lbs. <br />MRsT (LC#1) = 18233 in-lbs MRST (LC#2) = 6600 in-lbs <br />FOS=MRST/MOT = 30.860 z 1.5 No AB Regd FOS = M / M - <br />RST oT - 22.039 <br />----- .--. _ �.�-- 1"wx226A STEEL <br />z 1.5 No AB Regd ............ ANCHOR STRAP <br />M <br />-> No Anchorage Reqd - No Net U IIR at LC#1 and LC#2 <br />EPLACIS STRAP AT <br />j ACH END FRAME <br />Base Reactions: <br />AS � -! AND:$`-0"oc (MAX) AT <br />r- _ <br />t--4 '_- INTERIOR FRAMES, <br />Reactions (Service Loads): LC #1 LC #2 <br />t ' t <br />y i TYP tuNa, <br />r ' <br />Rh = 6 lbs 2 lbs <br />? . s - ' (1)ANCHOR MOLT <br />R = 0 Ibs (No Uplift) 0 Ibs (No Uplift) <br />3 PER STRAP.. <br />TYP t,tRJO: <br />Overturning FOS = 30.860 >-1.5 22.039 >-1.5 <br />- - <br />} ✓ I i f <br />Sliding Restraint force, RRsT / FOS = 101lbs / 16.107 >= 1.5 OK 40lbs / 16.322 >= 1.5 OK <br />'(I <br />Reactions (Factored Loads). LC #1 LC #2 <br />Base Shear (R,h) = 18 lbs, 7 lbs <br />Tension Allowables <br />Net Uplift (R,,,,) = 0 lbs 0 lbs <br />Steel Strength, (0.75)$N„ = 4239 lbs <-ACI 318-14 Eq 17.4.1.2 <br />Overturning + Gravity (P) = 746lbs 209 lbs <br />Concrete Breakout, (0.75)¢Ncw= 636lbs <-ACI 318-14 Eq 17.4.2.1a <br />Pullout Strength, (0.75)�No = NA <_Act 318-14 Eq 17.4.3.1 <br />Anchor Design (using "Cracked Concrete" Properties) Concrete" Properties) <br />LC #1 LC #2 <br />Try: 3/$ 0 DeWalt Screw BOO Anchor 2* embed. <br />Factored Tension Load (N) = 0Ibs 0Ibs <br />Embedment = 2 in <br />max tension stress ratio (TSR) = 0.000 OK 0.000 OK <br />f', = 2500 psi <br />Shear Allowables <br />e, = Din <- Ecoen. Of Anchor <br />Steel Strength, +V„= 1449 lbs <-ACI 318-14 Eq 17.5.1.2c <br />h,, = 1.33 in 1.5(h„) = 2 in <br />Concrete breakout, 4Vd.= 1578 lbs <-ACI 318-14 Eq 17.5.2.1 b <br />c, = 5 in 1.5(c,) = 7.5 in <br />Concrete pryout, +V,p, = 913 lbs <-ACI 318-14 Eq 17.5.3.1 b <br />Conc. thickness, t = - 4In I <br />LC #1 LC #2 <br /># of Anchors, n = 1 anchors per connection <br />Factored Shear Load (V) = 18 lbs 7 lbs <br />Sx = ' Din <br />Max shear stress ratio (VSR) = 0.020 OK 0.008 OK <br />A„ = 0.094 inA2 Combined shear and tension stress ratio (TSR + VSR) = 0.020 < 1.2 OK - LC#1 (controls) <br />USE: NO UPLIFT - NO ANCHORS REQUIRED <br />48T - Full Gondola <br />