JOHNSTON
<br />PROJECT NO:
<br />SHEET NO:
<br />` '"
<br />T
<br />1935000706
<br />12_
<br />.13 "
<br />( T r'N S'_�`
<br />BIJRKHOLDER
<br />JBAAsSOCIATES
<br />PROJECT NAME:
<br />#0706 - Zephyrhills, FL
<br />MADE BY:
<br />DATE:
<br />consulting stIuctUral engineers
<br />MAV
<br />03/26/19
<br />930 CENTRAL KANSAS CITY, MO 64105
<br />CHECKED BY:
<br />DATE:
<br />816.421.4200 W W W.JBAENGR.COM
<br />Shelving / Double Sided 90" Tall "r 5 Level 48X
<br />2017 FBC / IBC 2015 / ASCE 7-10 / 2012 RMI (ANSI/MH16.1-12)
<br />Seismic Importance Factor = 1.5
<br />Supported on Elevated Floor (Y/N): No
<br />Total Load per shelf = 160 the <-assumes (2) shelves per level
<br />WIDTH
<br />�f IEEE
<br />D PTf
<br /># of Levels = 5 Level
<br />Uniform Weight per level = 18.75 psf/shelf
<br />Weight of Unit = 100lbs
<br />Upright Frame anchorage spacing nb width 4 ft (Frames are assumed to be 4'-O"oc
<br />9 P 9(T� )_ )
<br />Shelf depth (ea. side) = 24 in Shelf Load / Level
<br />! Frame i
<br />h6= Oin
<br />h8= Din
<br />hT= Oin
<br />h5= 21 in 300 lbs
<br />"
<br />h4 = 21 in 300 lbs
<br />h3 = 21 in 300 lbs
<br />hZ= 21 in 300 lbs
<br />ty
<br />h1 = 61n 300 lbs
<br />Total Shelf Height, H, = 90 in Unit Height, H = 90 in '
<br />Unit Base Depth, D = 33 in
<br />Overturning Stability Load cases are per ASCE 7 sect. 15.5.3.E :
<br />O
<br />Load Case 1• [per RMI sect. 2.6.8(1) - PL=0.67(PL)]
<br />Load Case 2' [per RMI sect. 2.6.8(2) - PL=1.0(PL)]
<br />[per RMI sect. 2.6.2, PLRF = 1.0]
<br />[per RMI sect. 2.6.2, PLRF = 1.01
<br />Seismic (C,)(lo) = 0.023 W, (Cross -Aisle)
<br />Seismic (C,)(1.) = 0.023 W. (Cross -Aisle)
<br />W. = (0.67)(PLRF)((0.67)PL)+DL = 773.4 lbs
<br />W. _ (0.67)(PLRF)(0 )PL)+DL = 301.0 lbs
<br />Base Shear, V = C.I.W. = 17.9 lbs
<br />Base Shear, V = C,I,W, = 7.0 lbs
<br />Horizontal forces per level, F. = C.V (RMI sect 2.6.6)
<br />Horizontal forces per level, F. = CKV (RMI sect 2.6.6)
<br />(Service Loads, E = 0.7) Fa= 0.0 lbs @ 0 in (CM)
<br />(Service Loads) Fq= 0.0 lbs
<br />Note: Fe= 0.0 lbs @ 0 in (CM)
<br />F6= 0.0 lbs
<br />(CM) = Product Center of FT= 0.0 lbs @ 0 in (CM)
<br />Fr= 0.0 lbs
<br />Mass typically 6 inches F6= 0.0 lbs @ 0 in (CM)
<br />F6= 0.0 lbs
<br />above the top of shelf at F5= 4.1 lbs @ 96 in (CM)
<br />FS= 4.2 lbs @ 96in (CM)
<br />each level. F4 = 3.2 lbs @ 75 in (CM)
<br />F4 = 0.0 lbs
<br />F3 = 2.3 lbs @ 54 in (CM)
<br />F3 = 0.0 lbs
<br />F2 = 1.4 lbs @ 33 in (CM)
<br />F2 = 0.0 lbs
<br />F1 = 0.5 lbs, @ 12 in (CM)
<br />F, = 0.0 lbs
<br />F. = 1.0 lbs @ 45 in (CM)
<br />F = 0.7 lbs @ 45in (CM)
<br />If, = 17.9 lbs (@ Factored Loads)
<br />if, = 7.0 lbs (@ Factored Loads)
<br />Calculate Overturning Moment (Service), MOT = E11hi
<br />Calculate Overturning Moment (Service), MOT 1:;hi
<br />MOT = 859 in-lbs
<br />MOT = 436 in-lbs
<br />Calculate Resisting Moment (Service), MRST
<br />Calculate Resisting Moment (Service), MRST
<br />MRST = 18233 in-lbs
<br />MRST = 6600 in-lbs
<br />Factor of Safety
<br />Factor of Safety
<br />FOS = 21.226
<br />FOS = 15.152
<br />NO UPLIFT - NO ANCHORS REQUIRED
<br />NO UPLIFT - NO ANCHORS REQUIRED
<br />Check Single Frame / Bay Overturning Stability
<br />MOT (LC#1) = 859 in-lbs MOT (LC#2) = 436 in-lbs
<br />MRST (LC#1) = 18233 in-lbs MRST (LC#2) = 6600 in-lbs
<br />FOS=MRST / MOT = 21.226 a 1.5 No AB Reqd FOS = MRST / MOT = 15.152
<br />HSTEEL
<br />a 1.5 No AS Reqd : -" --- - -- .- ,,r"` 'ANCHOROP, STRAP
<br />AN
<br />-> No Anchorage Reqd - No Net Uplift at LC#1 and LC#2
<br />y" PEACE STRAP AT
<br />I �? EACH ENO FRAME..
<br />AND S'-4"oc (MAX) AT
<br />Base Reactions:
<br />4 = INTERIOR FRAMES,
<br />~ �'
<br />Reactions (Service Loads): LC #1 LC #2
<br />- ¢ TYP I VN0.
<br />>� ( u,
<br />R,,= 6lbs 2lbs
<br />ti z-3 (1)ANCHOR SOLT
<br />PER STRAP,
<br />i
<br />R = O lbs (No Uplift) O lbs (No Uplift)
<br />- - _ - '+ TYP ) UNO.
<br />Overturning FOS = 21.226 - 1.5 15.152 >= is
<br />7 • [l (1 a )? {
<br />Sliding Restraint force, RRST / FOS = 1031bs 116.43 >=1.5 OK 411bs / 16.744 >= 1.5 OK
<br />� �t
<br />Reactions (Factored Loads): LC #1 LC #2
<br />Base Shear (Ruh) = 18 lbs 7 lbs
<br />Tension Allowables
<br />Net Uplift (R,,,) = 0 lbs 0 lbs
<br />Steel Strength, (0.75)$N„ = 4239lbs <--ACI 318-14 Eq 17.4.1.2
<br />Overturning + Gravity (P) = 763 lbs 218 lbs
<br />Concrete Breakout, (0.75)bN,b,= 636lbs <--ACI 318-14 Eq 17.4.2.1a
<br />Pullout Strength, (0.75)¢No = NA <-ACI 318-14 Eq 17.4.3.1
<br />Anchor Design (using "Cracked Concrete- Pronerties)
<br />LC #1 LC #2
<br />Try: 3/8"0 DeWalt Screw Bolt+ Anchor 2" embed.
<br />Factored Tension Load (N) = 0 lbs 0 lbs
<br />Embedment = 2 In
<br />max tension stress ratio (TSR) = 0.000 OK 0.000 OK
<br />V, = 2500 psi
<br />Shear Allowables
<br />e, = ' O In <- Eccen. Of Anchor
<br />Steel Strength, +V„= 1449 lbs 4-ACI 318-14 Eq 17.5.1.2c
<br />h,, = 1.33 in 1.5(h„) = 2 in
<br />Concrete breakout, �Vc .= 1578 lbs <--AC1318-14 Eq 17.5.2.1 b
<br />C. = 5 in 1.5(c,) = 7.5 in
<br />Concrete pryout, �V,,, = 913 lbs <-ACI 318-14 Eq 17.5.3.1 b
<br />Conc. thickness, t = 4 in
<br />LC #1 LC #2
<br /># of Anchors, In = 1 anchors per connection
<br />Factored Shear Load (V) = 18 lbs 7 lbs
<br />Sx = 0 in
<br />Max shear stress ratio (VSR) = 0.020 OK 0.008 OK
<br />A„ = 0.094 inA2 Combined shear and tension stress ratio (TSR + VSR) = 0.020 < 1.2 OK - LC#1 (controls)
<br />USE: NO UPLIFT - NO ANCHORS REQUIRED
<br />48X - Full Gondola
<br />
|