Laserfiche WebLink
• <br /> Excel Engineering, Inc. 11/18/2009 Page # <br /> Building Roof Diaphragm Design : Wind parallel to ridge <br /> : Analytical Method - All Heights (ASCE 7 -05) <br /> (positive pressure acts Inward. negative acts outward) <br /> : Building dimension parallel to wind direction (save) = 84,7 ft (L) ASCE 6.3 <br /> : Building dimension normal to wind direction (gable) = 141.3 ft (B) ASCE 8.3 <br /> : Height above ground level = 20.00 ft (z) ASCE 6.3 <br /> : Roof pitch = 0.00 /12 (r) <br /> : Design velocity = 110.0 mph (V) ASCE F6 -1 <br /> : Parapet height = 4.00 ft (hp) <br /> : Roof rise = (B/2)(r /12) _ . 0.00 ft (y) <br /> : Mean roof height = 18.00 ft (h) <br /> : Velocity pressure z (case 2) = 16.43 psf (q2) ASCE E6 -18 <br /> : Velocity pressure @ h (case 2) = 15.41 psf (qr,2) ASCE E6-15 <br /> : Gust effect factors ... 0.82 (G) ASCE E6.4 <br /> : internal pressure coefficient = 0.18 (GC ASCE F6-5 <br /> : Pressure coefficients: Wndward wat = 0.80 (Cp) ASCE F6-6 <br /> Roof (0 to h/2) _ -0.90 (Cp) ASCE F6-6 <br /> Roof (h/2 to h) _ -0.90 (Cp) ASCE F8-6 <br /> Roof (h to 2h) = -0.50 (Cp) ASCE F6-6 <br /> Roof (> 2h) = -0.30 (Cp) ASCE F6-6 <br /> Leeward wall = -0.50 (Cp) ASCE F6-6 <br /> Side wails = -0.70 (Cp) ASCE F6-6 <br /> Windward parapet = 1.50 (GCp„) ASCE 6.5.12.2.4 <br /> Leeward parapet = -1.00 (GCp„) ASCE 6.6.12.2.4 <br /> -GC +GC <br /> : Windward wall design pressure = ((g ((qu)(GC0)) = 13.58 8.03 psf (P1) ASCE E6-17 <br /> : Windward parapet design pressure = (Q = 24.64 24.64 psf (Pip) ASCE E6-20 <br /> : Leeward wall design pressure = ((q ((q , _ -3.56 -9.11 psf (P2) ASCE E6 -17 <br /> : Leeward parapet design pressure = (gz)(GCp,J = -16.43 -16.43 psf (P2p) ASCE E6-20 <br /> : Side wall design pressure = ((q,)(G)(Cp))- ((gh2)(GCpr)) _ -6.09 -11.64 psf (P5) ASCE E6 -17 <br /> : Horizontal force at eave = ((h12XP1- P2))+((hp)(P1 p -P2p)) = 37 _ 301.37) p11 (HRe) 3O 1I , <br /> : Horizontal force at peak = ((YXP1 -P2)) = 0.00 pif (HRp) <br /> : Total force transferred to shearwall = (( (HRe))(B/2)) +((1/2)(HRp)(B12))) = controls.over minimum 21296.4 Ib (V) <br /> : Diaphragm unit shear = (V) /(L) = coritrals.over minimum - 251.52 pif (v) <br /> : Minimum Method (IBC 1609.1.2)1 <br /> : Horizontal force at eave = (10 psf)(h/2 +hp) = 120.00 pif (HRem) <br /> : Horizontal force at peak = (10 pafXy) = 0.00 pif (HRem) <br /> : Total force transferred to shearwali = ((( HRem)(B/2)) +((112)(HRpm)(B/2))) = 8479.8 Ib (V„,;,) <br /> : Diaphragm unit shear = (V„, = 100.18 pif (vna „) <br /> : Roof Deck Deal: n <br /> : Aspect ratio •r�G _ 1.67 < r00 }. <br /> E Roof Pan I .5B-22 • = /8' Puddle Weld' 34.6 pif 20 SIGN • <br /> Patt : 86/4 Ott EDN PAFu 07.7 •EFr_DESIG E`' ..:4` v4 <br /> SI lap: (1) #1 s EK Screw w <br /> : Chord Design 1 <br /> : Max .compression force = max((( HRpm)( B ))1(12L) +(((HRem)(B /(8L),((( HRp )(B /(12L) +(((HRe)(B 81386.90 lb (C) <br /> : Max. tension force = max((( HRpm)(B )) /(12L) +(((HRem)(B /(SL),((( HRp )(B /(12L) +(((HRe)(B /(8L)) = 8886.90 Ib (T) <br /> Using: 1 L4X4X1 /4 Steel Angle (n) <br /> : Allowable compressive force = O.K. 14600.0 Ib (C) RISC -13 T4-12 <br /> : Allowable tensile force = (.6)(Fy)(A) = O.K. 41 -904.0 Ib (T•) <br /> : Chord area = 1.94 in (A) <br /> : Chord allowable yield stress = 36000.00 psi (Fy) <br /> F :1Standards1500 StructurarCalculatIon Spreadsheets'SPREADSHEETS12006 IBC analytical wind - steel - flat -1 story.xls <br />